Add comprehensive SQL and PostgreSQL prompt collection

- Add sql-code-review.prompt.md: Universal SQL code review for security, maintainability, and quality standards
- Add sql-optimization.prompt.md: Universal SQL performance optimization for query tuning and indexing
- Add postgresql-code-review.prompt.md: PostgreSQL-specific code review focusing on PG best practices and anti-patterns
- Add postgresql-optimization.prompt.md: PostgreSQL-specific development assistant for unique PG features (JSONB, arrays, custom types)

This creates a complete 4-prompt ecosystem with zero overlap:
- Universal SQL (code quality + performance) for cross-database compatibility
- PostgreSQL-specific (code quality + performance) for PG-exclusive features

Each prompt serves distinct, isolated purposes while complementing each other for comprehensive SQL development support.
This commit is contained in:
shubham070 2025-07-20 13:37:05 +05:30
parent 407e2a4faf
commit e0d87f7415
5 changed files with 1221 additions and 0 deletions

View File

@ -110,7 +110,11 @@ Ready-to-use prompt templates for specific development scenarios and tasks, defi
| [My Issues](prompts/my-issues.prompt.md) | List my issues in the current repository | [![Install in VS Code](https://img.shields.io/badge/VS_Code-Install-0098FF?style=flat-square&logo=visualstudiocode&logoColor=white)](https://vscode.dev/redirect?url=vscode%3Achat-prompt%2Finstall%3Furl%3Dhttps%3A%2F%2Fraw.githubusercontent.com%2Fgithub%2Fawesome-copilot%2Fmain%2Fprompts%2Fmy-issues.prompt.md) [![Install in VS Code](https://img.shields.io/badge/VS_Code_Insiders-Install-24bfa5?style=flat-square&logo=visualstudiocode&logoColor=white)](https://insiders.vscode.dev/redirect?url=vscode-insiders%3Achat-prompt%2Finstall%3Furl%3Dhttps%3A%2F%2Fraw.githubusercontent.com%2Fgithub%2Fawesome-copilot%2Fmain%2Fprompts%2Fmy-issues.prompt.md) | | [My Issues](prompts/my-issues.prompt.md) | List my issues in the current repository | [![Install in VS Code](https://img.shields.io/badge/VS_Code-Install-0098FF?style=flat-square&logo=visualstudiocode&logoColor=white)](https://vscode.dev/redirect?url=vscode%3Achat-prompt%2Finstall%3Furl%3Dhttps%3A%2F%2Fraw.githubusercontent.com%2Fgithub%2Fawesome-copilot%2Fmain%2Fprompts%2Fmy-issues.prompt.md) [![Install in VS Code](https://img.shields.io/badge/VS_Code_Insiders-Install-24bfa5?style=flat-square&logo=visualstudiocode&logoColor=white)](https://insiders.vscode.dev/redirect?url=vscode-insiders%3Achat-prompt%2Finstall%3Furl%3Dhttps%3A%2F%2Fraw.githubusercontent.com%2Fgithub%2Fawesome-copilot%2Fmain%2Fprompts%2Fmy-issues.prompt.md) |
| [My Pull Requests](prompts/my-pull-requests.prompt.md) | List my pull requests in the current repository | [![Install in VS Code](https://img.shields.io/badge/VS_Code-Install-0098FF?style=flat-square&logo=visualstudiocode&logoColor=white)](https://vscode.dev/redirect?url=vscode%3Achat-prompt%2Finstall%3Furl%3Dhttps%3A%2F%2Fraw.githubusercontent.com%2Fgithub%2Fawesome-copilot%2Fmain%2Fprompts%2Fmy-pull-requests.prompt.md) [![Install in VS Code](https://img.shields.io/badge/VS_Code_Insiders-Install-24bfa5?style=flat-square&logo=visualstudiocode&logoColor=white)](https://insiders.vscode.dev/redirect?url=vscode-insiders%3Achat-prompt%2Finstall%3Furl%3Dhttps%3A%2F%2Fraw.githubusercontent.com%2Fgithub%2Fawesome-copilot%2Fmain%2Fprompts%2Fmy-pull-requests.prompt.md) | | [My Pull Requests](prompts/my-pull-requests.prompt.md) | List my pull requests in the current repository | [![Install in VS Code](https://img.shields.io/badge/VS_Code-Install-0098FF?style=flat-square&logo=visualstudiocode&logoColor=white)](https://vscode.dev/redirect?url=vscode%3Achat-prompt%2Finstall%3Furl%3Dhttps%3A%2F%2Fraw.githubusercontent.com%2Fgithub%2Fawesome-copilot%2Fmain%2Fprompts%2Fmy-pull-requests.prompt.md) [![Install in VS Code](https://img.shields.io/badge/VS_Code_Insiders-Install-24bfa5?style=flat-square&logo=visualstudiocode&logoColor=white)](https://insiders.vscode.dev/redirect?url=vscode-insiders%3Achat-prompt%2Finstall%3Furl%3Dhttps%3A%2F%2Fraw.githubusercontent.com%2Fgithub%2Fawesome-copilot%2Fmain%2Fprompts%2Fmy-pull-requests.prompt.md) |
| [Next Intl Add Language](prompts/next-intl-add-language.prompt.md) | Add new language to a Next.js + next-intl application | [![Install in VS Code](https://img.shields.io/badge/VS_Code-Install-0098FF?style=flat-square&logo=visualstudiocode&logoColor=white)](https://vscode.dev/redirect?url=vscode%3Achat-prompt%2Finstall%3Furl%3Dhttps%3A%2F%2Fraw.githubusercontent.com%2Fgithub%2Fawesome-copilot%2Fmain%2Fprompts%2Fnext-intl-add-language.prompt.md) [![Install in VS Code](https://img.shields.io/badge/VS_Code_Insiders-Install-24bfa5?style=flat-square&logo=visualstudiocode&logoColor=white)](https://insiders.vscode.dev/redirect?url=vscode-insiders%3Achat-prompt%2Finstall%3Furl%3Dhttps%3A%2F%2Fraw.githubusercontent.com%2Fgithub%2Fawesome-copilot%2Fmain%2Fprompts%2Fnext-intl-add-language.prompt.md) | | [Next Intl Add Language](prompts/next-intl-add-language.prompt.md) | Add new language to a Next.js + next-intl application | [![Install in VS Code](https://img.shields.io/badge/VS_Code-Install-0098FF?style=flat-square&logo=visualstudiocode&logoColor=white)](https://vscode.dev/redirect?url=vscode%3Achat-prompt%2Finstall%3Furl%3Dhttps%3A%2F%2Fraw.githubusercontent.com%2Fgithub%2Fawesome-copilot%2Fmain%2Fprompts%2Fnext-intl-add-language.prompt.md) [![Install in VS Code](https://img.shields.io/badge/VS_Code_Insiders-Install-24bfa5?style=flat-square&logo=visualstudiocode&logoColor=white)](https://insiders.vscode.dev/redirect?url=vscode-insiders%3Achat-prompt%2Finstall%3Furl%3Dhttps%3A%2F%2Fraw.githubusercontent.com%2Fgithub%2Fawesome-copilot%2Fmain%2Fprompts%2Fnext-intl-add-language.prompt.md) |
| [PostgreSQL Code Review Assistant](prompts/postgresql-code-review.prompt.md) | PostgreSQL-specific code review focusing on PostgreSQL best practices, anti-patterns, and PostgreSQL-unique quality standards. | [![Install in VS Code](https://img.shields.io/badge/VS_Code-Install-0098FF?style=flat-square&logo=visualstudiocode&logoColor=white)](https://vscode.dev/redirect?url=vscode%3Achat-prompt%2Finstall%3Furl%3Dhttps%3A%2F%2Fraw.githubusercontent.com%2Fgithub%2Fawesome-copilot%2Fmain%2Fprompts%2Fpostgresql-code-review.prompt.md) [![Install in VS Code](https://img.shields.io/badge/VS_Code_Insiders-Install-24bfa5?style=flat-square&logo=visualstudiocode&logoColor=white)](https://insiders.vscode.dev/redirect?url=vscode-insiders%3Achat-prompt%2Finstall%3Furl%3Dhttps%3A%2F%2Fraw.githubusercontent.com%2Fgithub%2Fawesome-copilot%2Fmain%2Fprompts%2Fpostgresql-code-review.prompt.md) |
| [PostgreSQL Development Assistant](prompts/postgresql-optimization.prompt.md) | PostgreSQL-specific development assistant focusing on unique PostgreSQL features, advanced data types, and PostgreSQL-exclusive capabilities. Complements general SQL optimization and code review. | [![Install in VS Code](https://img.shields.io/badge/VS_Code-Install-0098FF?style=flat-square&logo=visualstudiocode&logoColor=white)](https://vscode.dev/redirect?url=vscode%3Achat-prompt%2Finstall%3Furl%3Dhttps%3A%2F%2Fraw.githubusercontent.com%2Fgithub%2Fawesome-copilot%2Fmain%2Fprompts%2Fpostgresql-optimization.prompt.md) [![Install in VS Code](https://img.shields.io/badge/VS_Code_Insiders-Install-24bfa5?style=flat-square&logo=visualstudiocode&logoColor=white)](https://insiders.vscode.dev/redirect?url=vscode-insiders%3Achat-prompt%2Finstall%3Furl%3Dhttps%3A%2F%2Fraw.githubusercontent.com%2Fgithub%2Fawesome-copilot%2Fmain%2Fprompts%2Fpostgresql-optimization.prompt.md) |
| [Review And Refactor](prompts/review-and-refactor.prompt.md) | Review and refactor code in your project according to defined instructions | [![Install in VS Code](https://img.shields.io/badge/VS_Code-Install-0098FF?style=flat-square&logo=visualstudiocode&logoColor=white)](https://vscode.dev/redirect?url=vscode%3Achat-prompt%2Finstall%3Furl%3Dhttps%3A%2F%2Fraw.githubusercontent.com%2Fgithub%2Fawesome-copilot%2Fmain%2Fprompts%2Freview-and-refactor.prompt.md) [![Install in VS Code](https://img.shields.io/badge/VS_Code_Insiders-Install-24bfa5?style=flat-square&logo=visualstudiocode&logoColor=white)](https://insiders.vscode.dev/redirect?url=vscode-insiders%3Achat-prompt%2Finstall%3Furl%3Dhttps%3A%2F%2Fraw.githubusercontent.com%2Fgithub%2Fawesome-copilot%2Fmain%2Fprompts%2Freview-and-refactor.prompt.md) | | [Review And Refactor](prompts/review-and-refactor.prompt.md) | Review and refactor code in your project according to defined instructions | [![Install in VS Code](https://img.shields.io/badge/VS_Code-Install-0098FF?style=flat-square&logo=visualstudiocode&logoColor=white)](https://vscode.dev/redirect?url=vscode%3Achat-prompt%2Finstall%3Furl%3Dhttps%3A%2F%2Fraw.githubusercontent.com%2Fgithub%2Fawesome-copilot%2Fmain%2Fprompts%2Freview-and-refactor.prompt.md) [![Install in VS Code](https://img.shields.io/badge/VS_Code_Insiders-Install-24bfa5?style=flat-square&logo=visualstudiocode&logoColor=white)](https://insiders.vscode.dev/redirect?url=vscode-insiders%3Achat-prompt%2Finstall%3Furl%3Dhttps%3A%2F%2Fraw.githubusercontent.com%2Fgithub%2Fawesome-copilot%2Fmain%2Fprompts%2Freview-and-refactor.prompt.md) |
| [SQL Code Review](prompts/sql-code-review.prompt.md) | Universal SQL code review focusing on security, maintainability, and code quality standards across all SQL databases. Complements SQL optimization prompt. | [![Install in VS Code](https://img.shields.io/badge/VS_Code-Install-0098FF?style=flat-square&logo=visualstudiocode&logoColor=white)](https://vscode.dev/redirect?url=vscode%3Achat-prompt%2Finstall%3Furl%3Dhttps%3A%2F%2Fraw.githubusercontent.com%2Fgithub%2Fawesome-copilot%2Fmain%2Fprompts%2Fsql-code-review.prompt.md) [![Install in VS Code](https://img.shields.io/badge/VS_Code_Insiders-Install-24bfa5?style=flat-square&logo=visualstudiocode&logoColor=white)](https://insiders.vscode.dev/redirect?url=vscode-insiders%3Achat-prompt%2Finstall%3Furl%3Dhttps%3A%2F%2Fraw.githubusercontent.com%2Fgithub%2Fawesome-copilot%2Fmain%2Fprompts%2Fsql-code-review.prompt.md) |
| [SQL Performance Optimization Assistant](prompts/sql-optimization.prompt.md) | Universal SQL performance optimization assistant for query tuning, indexing strategies, and database performance across all SQL databases. | [![Install in VS Code](https://img.shields.io/badge/VS_Code-Install-0098FF?style=flat-square&logo=visualstudiocode&logoColor=white)](https://vscode.dev/redirect?url=vscode%3Achat-prompt%2Finstall%3Furl%3Dhttps%3A%2F%2Fraw.githubusercontent.com%2Fgithub%2Fawesome-copilot%2Fmain%2Fprompts%2Fsql-optimization.prompt.md) [![Install in VS Code](https://img.shields.io/badge/VS_Code_Insiders-Install-24bfa5?style=flat-square&logo=visualstudiocode&logoColor=white)](https://insiders.vscode.dev/redirect?url=vscode-insiders%3Achat-prompt%2Finstall%3Furl%3Dhttps%3A%2F%2Fraw.githubusercontent.com%2Fgithub%2Fawesome-copilot%2Fmain%2Fprompts%2Fsql-optimization.prompt.md) |
| [Suggest Awesome GitHub Copilot Chatmodes](prompts/suggest-awesome-github-copilot-chatmodes.prompt.md) | Suggest relevant GitHub Copilot chatmode files from the awesome-copilot repository based on current repository context and chat history, avoiding duplicates with existing chatmodes in this repository. | [![Install in VS Code](https://img.shields.io/badge/VS_Code-Install-0098FF?style=flat-square&logo=visualstudiocode&logoColor=white)](https://vscode.dev/redirect?url=vscode%3Achat-prompt%2Finstall%3Furl%3Dhttps%3A%2F%2Fraw.githubusercontent.com%2Fgithub%2Fawesome-copilot%2Fmain%2Fprompts%2Fsuggest-awesome-github-copilot-chatmodes.prompt.md) [![Install in VS Code](https://img.shields.io/badge/VS_Code_Insiders-Install-24bfa5?style=flat-square&logo=visualstudiocode&logoColor=white)](https://insiders.vscode.dev/redirect?url=vscode-insiders%3Achat-prompt%2Finstall%3Furl%3Dhttps%3A%2F%2Fraw.githubusercontent.com%2Fgithub%2Fawesome-copilot%2Fmain%2Fprompts%2Fsuggest-awesome-github-copilot-chatmodes.prompt.md) | | [Suggest Awesome GitHub Copilot Chatmodes](prompts/suggest-awesome-github-copilot-chatmodes.prompt.md) | Suggest relevant GitHub Copilot chatmode files from the awesome-copilot repository based on current repository context and chat history, avoiding duplicates with existing chatmodes in this repository. | [![Install in VS Code](https://img.shields.io/badge/VS_Code-Install-0098FF?style=flat-square&logo=visualstudiocode&logoColor=white)](https://vscode.dev/redirect?url=vscode%3Achat-prompt%2Finstall%3Furl%3Dhttps%3A%2F%2Fraw.githubusercontent.com%2Fgithub%2Fawesome-copilot%2Fmain%2Fprompts%2Fsuggest-awesome-github-copilot-chatmodes.prompt.md) [![Install in VS Code](https://img.shields.io/badge/VS_Code_Insiders-Install-24bfa5?style=flat-square&logo=visualstudiocode&logoColor=white)](https://insiders.vscode.dev/redirect?url=vscode-insiders%3Achat-prompt%2Finstall%3Furl%3Dhttps%3A%2F%2Fraw.githubusercontent.com%2Fgithub%2Fawesome-copilot%2Fmain%2Fprompts%2Fsuggest-awesome-github-copilot-chatmodes.prompt.md) |
| [Suggest Awesome GitHub Copilot Prompts](prompts/suggest-awesome-github-copilot-prompts.prompt.md) | Suggest relevant GitHub Copilot prompt files from the awesome-copilot repository based on current repository context and chat history, avoiding duplicates with existing prompts in this repository. | [![Install in VS Code](https://img.shields.io/badge/VS_Code-Install-0098FF?style=flat-square&logo=visualstudiocode&logoColor=white)](https://vscode.dev/redirect?url=vscode%3Achat-prompt%2Finstall%3Furl%3Dhttps%3A%2F%2Fraw.githubusercontent.com%2Fgithub%2Fawesome-copilot%2Fmain%2Fprompts%2Fsuggest-awesome-github-copilot-prompts.prompt.md) [![Install in VS Code](https://img.shields.io/badge/VS_Code_Insiders-Install-24bfa5?style=flat-square&logo=visualstudiocode&logoColor=white)](https://insiders.vscode.dev/redirect?url=vscode-insiders%3Achat-prompt%2Finstall%3Furl%3Dhttps%3A%2F%2Fraw.githubusercontent.com%2Fgithub%2Fawesome-copilot%2Fmain%2Fprompts%2Fsuggest-awesome-github-copilot-prompts.prompt.md) | | [Suggest Awesome GitHub Copilot Prompts](prompts/suggest-awesome-github-copilot-prompts.prompt.md) | Suggest relevant GitHub Copilot prompt files from the awesome-copilot repository based on current repository context and chat history, avoiding duplicates with existing prompts in this repository. | [![Install in VS Code](https://img.shields.io/badge/VS_Code-Install-0098FF?style=flat-square&logo=visualstudiocode&logoColor=white)](https://vscode.dev/redirect?url=vscode%3Achat-prompt%2Finstall%3Furl%3Dhttps%3A%2F%2Fraw.githubusercontent.com%2Fgithub%2Fawesome-copilot%2Fmain%2Fprompts%2Fsuggest-awesome-github-copilot-prompts.prompt.md) [![Install in VS Code](https://img.shields.io/badge/VS_Code_Insiders-Install-24bfa5?style=flat-square&logo=visualstudiocode&logoColor=white)](https://insiders.vscode.dev/redirect?url=vscode-insiders%3Achat-prompt%2Finstall%3Furl%3Dhttps%3A%2F%2Fraw.githubusercontent.com%2Fgithub%2Fawesome-copilot%2Fmain%2Fprompts%2Fsuggest-awesome-github-copilot-prompts.prompt.md) |
| [Update Azure Verified Modules in Bicep Files](prompts/update-avm-modules-in-bicep.prompt.md) | Update Azure Verified Modules (AVM) to latest versions in Bicep files. | [![Install in VS Code](https://img.shields.io/badge/VS_Code-Install-0098FF?style=flat-square&logo=visualstudiocode&logoColor=white)](https://vscode.dev/redirect?url=vscode%3Achat-prompt%2Finstall%3Furl%3Dhttps%3A%2F%2Fraw.githubusercontent.com%2Fgithub%2Fawesome-copilot%2Fmain%2Fprompts%2Fupdate-avm-modules-in-bicep.prompt.md) [![Install in VS Code](https://img.shields.io/badge/VS_Code_Insiders-Install-24bfa5?style=flat-square&logo=visualstudiocode&logoColor=white)](https://insiders.vscode.dev/redirect?url=vscode-insiders%3Achat-prompt%2Finstall%3Furl%3Dhttps%3A%2F%2Fraw.githubusercontent.com%2Fgithub%2Fawesome-copilot%2Fmain%2Fprompts%2Fupdate-avm-modules-in-bicep.prompt.md) | | [Update Azure Verified Modules in Bicep Files](prompts/update-avm-modules-in-bicep.prompt.md) | Update Azure Verified Modules (AVM) to latest versions in Bicep files. | [![Install in VS Code](https://img.shields.io/badge/VS_Code-Install-0098FF?style=flat-square&logo=visualstudiocode&logoColor=white)](https://vscode.dev/redirect?url=vscode%3Achat-prompt%2Finstall%3Furl%3Dhttps%3A%2F%2Fraw.githubusercontent.com%2Fgithub%2Fawesome-copilot%2Fmain%2Fprompts%2Fupdate-avm-modules-in-bicep.prompt.md) [![Install in VS Code](https://img.shields.io/badge/VS_Code_Insiders-Install-24bfa5?style=flat-square&logo=visualstudiocode&logoColor=white)](https://insiders.vscode.dev/redirect?url=vscode-insiders%3Achat-prompt%2Finstall%3Furl%3Dhttps%3A%2F%2Fraw.githubusercontent.com%2Fgithub%2Fawesome-copilot%2Fmain%2Fprompts%2Fupdate-avm-modules-in-bicep.prompt.md) |

View File

@ -0,0 +1,213 @@
---
mode: 'agent'
tools: ['changes', 'codebase', 'editFiles', 'problems']
description: 'PostgreSQL-specific code review focusing on PostgreSQL best practices, anti-patterns, and PostgreSQL-unique quality standards.'
---
# PostgreSQL Code Review Assistant
Expert PostgreSQL code review for ${selection} (or entire project if no selection). Focus on PostgreSQL-specific best practices, anti-patterns, and quality standards that are unique to PostgreSQL.
## 🎯 PostgreSQL-Specific Review Areas
### JSONB Best Practices
```sql
-- ❌ BAD: Inefficient JSONB usage
SELECT * FROM orders WHERE data->>'status' = 'shipped'; -- No index support
-- ✅ GOOD: Indexable JSONB queries
CREATE INDEX idx_orders_status ON orders USING gin((data->'status'));
SELECT * FROM orders WHERE data @> '{"status": "shipped"}';
-- ❌ BAD: Deep nesting without consideration
UPDATE orders SET data = data || '{"shipping":{"tracking":{"number":"123"}}}';
-- ✅ GOOD: Structured JSONB with validation
ALTER TABLE orders ADD CONSTRAINT valid_status
CHECK (data->>'status' IN ('pending', 'shipped', 'delivered'));
```
### Array Operations Review
```sql
-- ❌ BAD: Inefficient array operations
SELECT * FROM products WHERE 'electronics' = ANY(categories); -- No index
-- ✅ GOOD: GIN indexed array queries
CREATE INDEX idx_products_categories ON products USING gin(categories);
SELECT * FROM products WHERE categories @> ARRAY['electronics'];
-- ❌ BAD: Array concatenation in loops
-- This would be inefficient in a function/procedure
-- ✅ GOOD: Bulk array operations
UPDATE products SET categories = categories || ARRAY['new_category']
WHERE id IN (SELECT id FROM products WHERE condition);
```
### PostgreSQL Schema Design Review
```sql
-- ❌ BAD: Not using PostgreSQL features
CREATE TABLE users (
id INTEGER,
email VARCHAR(255),
created_at TIMESTAMP
);
-- ✅ GOOD: PostgreSQL-optimized schema
CREATE TABLE users (
id BIGSERIAL PRIMARY KEY,
email CITEXT UNIQUE NOT NULL, -- Case-insensitive email
created_at TIMESTAMPTZ DEFAULT NOW(),
metadata JSONB DEFAULT '{}',
CONSTRAINT valid_email CHECK (email ~* '^[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}$')
);
-- Add JSONB GIN index for metadata queries
CREATE INDEX idx_users_metadata ON users USING gin(metadata);
```
### Custom Types and Domains
```sql
-- ❌ BAD: Using generic types for specific data
CREATE TABLE transactions (
amount DECIMAL(10,2),
currency VARCHAR(3),
status VARCHAR(20)
);
-- ✅ GOOD: PostgreSQL custom types
CREATE TYPE currency_code AS ENUM ('USD', 'EUR', 'GBP', 'JPY');
CREATE TYPE transaction_status AS ENUM ('pending', 'completed', 'failed', 'cancelled');
CREATE DOMAIN positive_amount AS DECIMAL(10,2) CHECK (VALUE > 0);
CREATE TABLE transactions (
amount positive_amount NOT NULL,
currency currency_code NOT NULL,
status transaction_status DEFAULT 'pending'
);
```
## 🔍 PostgreSQL-Specific Anti-Patterns
### Performance Anti-Patterns
- **Avoiding PostgreSQL-specific indexes**: Not using GIN/GiST for appropriate data types
- **Misusing JSONB**: Treating JSONB like a simple string field
- **Ignoring array operators**: Using inefficient array operations
- **Poor partition key selection**: Not leveraging PostgreSQL partitioning effectively
### Schema Design Issues
- **Not using ENUM types**: Using VARCHAR for limited value sets
- **Ignoring constraints**: Missing CHECK constraints for data validation
- **Wrong data types**: Using VARCHAR instead of TEXT or CITEXT
- **Missing JSONB structure**: Unstructured JSONB without validation
### Function and Trigger Issues
```sql
-- ❌ BAD: Inefficient trigger function
CREATE OR REPLACE FUNCTION update_modified_time()
RETURNS TRIGGER AS $$
BEGIN
NEW.updated_at = NOW(); -- Should use TIMESTAMPTZ
RETURN NEW;
END;
$$ LANGUAGE plpgsql;
-- ✅ GOOD: Optimized trigger function
CREATE OR REPLACE FUNCTION update_modified_time()
RETURNS TRIGGER AS $$
BEGIN
NEW.updated_at = CURRENT_TIMESTAMP;
RETURN NEW;
END;
$$ LANGUAGE plpgsql;
-- Set trigger to fire only when needed
CREATE TRIGGER update_modified_time_trigger
BEFORE UPDATE ON table_name
FOR EACH ROW
WHEN (OLD.* IS DISTINCT FROM NEW.*)
EXECUTE FUNCTION update_modified_time();
```
## 📊 PostgreSQL Extension Usage Review
### Extension Best Practices
```sql
-- ✅ Check if extension exists before creating
CREATE EXTENSION IF NOT EXISTS "uuid-ossp";
CREATE EXTENSION IF NOT EXISTS "pgcrypto";
CREATE EXTENSION IF NOT EXISTS "pg_trgm";
-- ✅ Use extensions appropriately
-- UUID generation
SELECT uuid_generate_v4();
-- Password hashing
SELECT crypt('password', gen_salt('bf'));
-- Fuzzy text matching
SELECT word_similarity('postgres', 'postgre');
```
## 🛡️ PostgreSQL Security Review
### Row Level Security (RLS)
```sql
-- ✅ GOOD: Implementing RLS
ALTER TABLE sensitive_data ENABLE ROW LEVEL SECURITY;
CREATE POLICY user_data_policy ON sensitive_data
FOR ALL TO application_role
USING (user_id = current_setting('app.current_user_id')::INTEGER);
```
### Privilege Management
```sql
-- ❌ BAD: Overly broad permissions
GRANT ALL PRIVILEGES ON ALL TABLES IN SCHEMA public TO app_user;
-- ✅ GOOD: Granular permissions
GRANT SELECT, INSERT, UPDATE ON specific_table TO app_user;
GRANT USAGE ON SEQUENCE specific_table_id_seq TO app_user;
```
## 🎯 PostgreSQL Code Quality Checklist
### Schema Design
- [ ] Using appropriate PostgreSQL data types (CITEXT, JSONB, arrays)
- [ ] Leveraging ENUM types for constrained values
- [ ] Implementing proper CHECK constraints
- [ ] Using TIMESTAMPTZ instead of TIMESTAMP
- [ ] Defining custom domains for reusable constraints
### Performance Considerations
- [ ] Appropriate index types (GIN for JSONB/arrays, GiST for ranges)
- [ ] JSONB queries using containment operators (@>, ?)
- [ ] Array operations using PostgreSQL-specific operators
- [ ] Proper use of window functions and CTEs
- [ ] Efficient use of PostgreSQL-specific functions
### PostgreSQL Features Utilization
- [ ] Using extensions where appropriate
- [ ] Implementing stored procedures in PL/pgSQL when beneficial
- [ ] Leveraging PostgreSQL's advanced SQL features
- [ ] Using PostgreSQL-specific optimization techniques
- [ ] Implementing proper error handling in functions
### Security and Compliance
- [ ] Row Level Security (RLS) implementation where needed
- [ ] Proper role and privilege management
- [ ] Using PostgreSQL's built-in encryption functions
- [ ] Implementing audit trails with PostgreSQL features
## 📝 PostgreSQL-Specific Review Guidelines
1. **Data Type Optimization**: Ensure PostgreSQL-specific types are used appropriately
2. **Index Strategy**: Review index types and ensure PostgreSQL-specific indexes are utilized
3. **JSONB Structure**: Validate JSONB schema design and query patterns
4. **Function Quality**: Review PL/pgSQL functions for efficiency and best practices
5. **Extension Usage**: Verify appropriate use of PostgreSQL extensions
6. **Performance Features**: Check utilization of PostgreSQL's advanced features
7. **Security Implementation**: Review PostgreSQL-specific security features
Focus on PostgreSQL's unique capabilities and ensure the code leverages what makes PostgreSQL special rather than treating it as a generic SQL database.

View File

@ -0,0 +1,405 @@
---
mode: 'agent'
tools: ['changes', 'codebase', 'editFiles', 'problems']
description: 'PostgreSQL-specific development assistant focusing on unique PostgreSQL features, advanced data types, and PostgreSQL-exclusive capabilities. Complements general SQL optimization and code review.'
---
# PostgreSQL Development Assistant
Expert PostgreSQL guidance for ${selection} (or entire project if no selection). Focus on PostgreSQL-specific features, optimization patterns, and advanced capabilities.
## <20> PostgreSQL-Specific Features
### JSONB Operations
```sql
-- Advanced JSONB queries
CREATE TABLE events (
id SERIAL PRIMARY KEY,
data JSONB NOT NULL,
created_at TIMESTAMPTZ DEFAULT NOW()
);
-- GIN index for JSONB performance
CREATE INDEX idx_events_data_gin ON events USING gin(data);
-- JSONB containment and path queries
SELECT * FROM events
WHERE data @> '{"type": "login"}'
AND data #>> '{user,role}' = 'admin';
-- JSONB aggregation
SELECT jsonb_agg(data) FROM events WHERE data ? 'user_id';
```
### Array Operations
```sql
-- PostgreSQL arrays
CREATE TABLE posts (
id SERIAL PRIMARY KEY,
tags TEXT[],
categories INTEGER[]
);
-- Array queries and operations
SELECT * FROM posts WHERE 'postgresql' = ANY(tags);
SELECT * FROM posts WHERE tags && ARRAY['database', 'sql'];
SELECT * FROM posts WHERE array_length(tags, 1) > 3;
-- Array aggregation
SELECT array_agg(DISTINCT category) FROM posts, unnest(categories) as category;
```
### Window Functions & Analytics
```sql
-- Advanced window functions
SELECT
product_id,
sale_date,
amount,
-- Running totals
SUM(amount) OVER (PARTITION BY product_id ORDER BY sale_date) as running_total,
-- Moving averages
AVG(amount) OVER (PARTITION BY product_id ORDER BY sale_date ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) as moving_avg,
-- Rankings
DENSE_RANK() OVER (PARTITION BY EXTRACT(month FROM sale_date) ORDER BY amount DESC) as monthly_rank,
-- Lag/Lead for comparisons
LAG(amount, 1) OVER (PARTITION BY product_id ORDER BY sale_date) as prev_amount
FROM sales;
```
### Full-Text Search
```sql
-- PostgreSQL full-text search
CREATE TABLE documents (
id SERIAL PRIMARY KEY,
title TEXT,
content TEXT,
search_vector tsvector
);
-- Update search vector
UPDATE documents
SET search_vector = to_tsvector('english', title || ' ' || content);
-- GIN index for search performance
CREATE INDEX idx_documents_search ON documents USING gin(search_vector);
-- Search queries
SELECT * FROM documents
WHERE search_vector @@ plainto_tsquery('english', 'postgresql database');
-- Ranking results
SELECT *, ts_rank(search_vector, plainto_tsquery('postgresql')) as rank
FROM documents
WHERE search_vector @@ plainto_tsquery('postgresql')
ORDER BY rank DESC;
```
## <20> PostgreSQL Performance Tuning
### Query Optimization
```sql
-- EXPLAIN ANALYZE for performance analysis
EXPLAIN (ANALYZE, BUFFERS, FORMAT TEXT)
SELECT u.name, COUNT(o.id) as order_count
FROM users u
LEFT JOIN orders o ON u.id = o.user_id
WHERE u.created_at > '2024-01-01'::date
GROUP BY u.id, u.name;
-- Identify slow queries from pg_stat_statements
SELECT query, calls, total_time, mean_time, rows,
100.0 * shared_blks_hit / nullif(shared_blks_hit + shared_blks_read, 0) AS hit_percent
FROM pg_stat_statements
ORDER BY total_time DESC
LIMIT 10;
```
### Index Strategies
```sql
-- Composite indexes for multi-column queries
CREATE INDEX idx_orders_user_date ON orders(user_id, order_date);
-- Partial indexes for filtered queries
CREATE INDEX idx_active_users ON users(created_at) WHERE status = 'active';
-- Expression indexes for computed values
CREATE INDEX idx_users_lower_email ON users(lower(email));
-- Covering indexes to avoid table lookups
CREATE INDEX idx_orders_covering ON orders(user_id, status) INCLUDE (total, created_at);
```
### Connection & Memory Management
```sql
-- Check connection usage
SELECT count(*) as connections, state
FROM pg_stat_activity
GROUP BY state;
-- Monitor memory usage
SELECT name, setting, unit
FROM pg_settings
WHERE name IN ('shared_buffers', 'work_mem', 'maintenance_work_mem');
```
## <20> PostgreSQL Advanced Data Types
### Custom Types & Domains
```sql
-- Create custom types
CREATE TYPE address_type AS (
street TEXT,
city TEXT,
postal_code TEXT,
country TEXT
);
CREATE TYPE order_status AS ENUM ('pending', 'processing', 'shipped', 'delivered', 'cancelled');
-- Use domains for data validation
CREATE DOMAIN email_address AS TEXT
CHECK (VALUE ~* '^[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}$');
-- Table using custom types
CREATE TABLE customers (
id SERIAL PRIMARY KEY,
email email_address NOT NULL,
address address_type,
status order_status DEFAULT 'pending'
);
```
### Range Types
```sql
-- PostgreSQL range types
CREATE TABLE reservations (
id SERIAL PRIMARY KEY,
room_id INTEGER,
reservation_period tstzrange,
price_range numrange
);
-- Range queries
SELECT * FROM reservations
WHERE reservation_period && tstzrange('2024-07-20', '2024-07-25');
-- Exclude overlapping ranges
ALTER TABLE reservations
ADD CONSTRAINT no_overlap
EXCLUDE USING gist (room_id WITH =, reservation_period WITH &&);
```
### Geometric Types
```sql
-- PostgreSQL geometric types
CREATE TABLE locations (
id SERIAL PRIMARY KEY,
name TEXT,
coordinates POINT,
coverage CIRCLE,
service_area POLYGON
);
-- Geometric queries
SELECT name FROM locations
WHERE coordinates <-> point(40.7128, -74.0060) < 10; -- Within 10 units
-- GiST index for geometric data
CREATE INDEX idx_locations_coords ON locations USING gist(coordinates);
```
## 📊 PostgreSQL Extensions & Tools
### Useful Extensions
```sql
-- Enable commonly used extensions
CREATE EXTENSION IF NOT EXISTS "uuid-ossp"; -- UUID generation
CREATE EXTENSION IF NOT EXISTS "pgcrypto"; -- Cryptographic functions
CREATE EXTENSION IF NOT EXISTS "unaccent"; -- Remove accents from text
CREATE EXTENSION IF NOT EXISTS "pg_trgm"; -- Trigram matching
CREATE EXTENSION IF NOT EXISTS "btree_gin"; -- GIN indexes for btree types
-- Using extensions
SELECT uuid_generate_v4(); -- Generate UUIDs
SELECT crypt('password', gen_salt('bf')); -- Hash passwords
SELECT similarity('postgresql', 'postgersql'); -- Fuzzy matching
```
### Monitoring & Maintenance
```sql
-- Database size and growth
SELECT pg_size_pretty(pg_database_size(current_database())) as db_size;
-- Table and index sizes
SELECT schemaname, tablename,
pg_size_pretty(pg_total_relation_size(schemaname||'.'||tablename)) as size
FROM pg_tables
ORDER BY pg_total_relation_size(schemaname||'.'||tablename) DESC;
-- Index usage statistics
SELECT schemaname, tablename, indexname, idx_scan, idx_tup_read, idx_tup_fetch
FROM pg_stat_user_indexes
WHERE idx_scan = 0; -- Unused indexes
```
### PostgreSQL-Specific Optimization Tips
- **Use EXPLAIN (ANALYZE, BUFFERS)** for detailed query analysis
- **Configure postgresql.conf** for your workload (OLTP vs OLAP)
- **Use connection pooling** (pgbouncer) for high-concurrency applications
- **Regular VACUUM and ANALYZE** for optimal performance
- **Partition large tables** using PostgreSQL 10+ declarative partitioning
- **Use pg_stat_statements** for query performance monitoring
## 📊 Monitoring and Maintenance
### Query Performance Monitoring
```sql
-- Identify slow queries
SELECT query, calls, total_time, mean_time, rows
FROM pg_stat_statements
ORDER BY total_time DESC
LIMIT 10;
-- Check index usage
SELECT schemaname, tablename, indexname, idx_scan, idx_tup_read, idx_tup_fetch
FROM pg_stat_user_indexes
WHERE idx_scan = 0;
```
### Database Maintenance
- **VACUUM and ANALYZE**: Regular maintenance for performance
- **Index Maintenance**: Monitor and rebuild fragmented indexes
- **Statistics Updates**: Keep query planner statistics current
- **Log Analysis**: Regular review of PostgreSQL logs
## 🛠️ Common Query Patterns
### Pagination
```sql
-- ❌ BAD: OFFSET for large datasets
SELECT * FROM products ORDER BY id OFFSET 10000 LIMIT 20;
-- ✅ GOOD: Cursor-based pagination
SELECT * FROM products
WHERE id > $last_id
ORDER BY id
LIMIT 20;
```
### Aggregation
```sql
-- ❌ BAD: Inefficient grouping
SELECT user_id, COUNT(*)
FROM orders
WHERE order_date >= '2024-01-01'
GROUP BY user_id;
-- ✅ GOOD: Optimized with partial index
CREATE INDEX idx_orders_recent ON orders(user_id)
WHERE order_date >= '2024-01-01';
SELECT user_id, COUNT(*)
FROM orders
WHERE order_date >= '2024-01-01'
GROUP BY user_id;
```
### JSON Queries
```sql
-- ❌ BAD: Inefficient JSON querying
SELECT * FROM users WHERE data::text LIKE '%admin%';
-- ✅ GOOD: JSONB operators and GIN index
CREATE INDEX idx_users_data_gin ON users USING gin(data);
SELECT * FROM users WHERE data @> '{"role": "admin"}';
```
## 📋 Optimization Checklist
### Query Analysis
- [ ] Run EXPLAIN ANALYZE for expensive queries
- [ ] Check for sequential scans on large tables
- [ ] Verify appropriate join algorithms
- [ ] Review WHERE clause selectivity
- [ ] Analyze sort and aggregation operations
### Index Strategy
- [ ] Create indexes for frequently queried columns
- [ ] Use composite indexes for multi-column searches
- [ ] Consider partial indexes for filtered queries
- [ ] Remove unused or duplicate indexes
- [ ] Monitor index bloat and fragmentation
### Security Review
- [ ] Use parameterized queries exclusively
- [ ] Implement proper access controls
- [ ] Enable row-level security where needed
- [ ] Audit sensitive data access
- [ ] Use secure connection methods
### Performance Monitoring
- [ ] Set up query performance monitoring
- [ ] Configure appropriate log settings
- [ ] Monitor connection pool usage
- [ ] Track database growth and maintenance needs
- [ ] Set up alerting for performance degradation
## 🎯 Optimization Output Format
### Query Analysis Results
```
## Query Performance Analysis
**Original Query**:
[Original SQL with performance issues]
**Issues Identified**:
- Sequential scan on large table (Cost: 15000.00)
- Missing index on frequently queried column
- Inefficient join order
**Optimized Query**:
[Improved SQL with explanations]
**Recommended Indexes**:
```sql
CREATE INDEX idx_table_column ON table(column);
```
**Performance Impact**: Expected 80% improvement in execution time
```
## 🚀 Advanced PostgreSQL Features
### Window Functions
```sql
-- Running totals and rankings
SELECT
product_id,
order_date,
amount,
SUM(amount) OVER (PARTITION BY product_id ORDER BY order_date) as running_total,
ROW_NUMBER() OVER (PARTITION BY product_id ORDER BY amount DESC) as rank
FROM sales;
```
### Common Table Expressions (CTEs)
```sql
-- Recursive queries for hierarchical data
WITH RECURSIVE category_tree AS (
SELECT id, name, parent_id, 1 as level
FROM categories
WHERE parent_id IS NULL
UNION ALL
SELECT c.id, c.name, c.parent_id, ct.level + 1
FROM categories c
JOIN category_tree ct ON c.parent_id = ct.id
)
SELECT * FROM category_tree ORDER BY level, name;
```
Focus on providing specific, actionable PostgreSQL optimizations that improve query performance, security, and maintainability while leveraging PostgreSQL's advanced features.

View File

@ -0,0 +1,302 @@
---
mode: 'agent'
tools: ['changes', 'codebase', 'editFiles', 'problems']
description: 'Universal SQL code review focusing on security, maintainability, and code quality standards across all SQL databases. Complements SQL optimization prompt.'
---
# SQL Code Review
Perform a thorough SQL code review of ${selection} (or entire project if no selection) focusing on security, performance, maintainability, and database best practices.
## 🔒 Security Analysis
### SQL Injection Prevention
```sql
-- ❌ CRITICAL: SQL Injection vulnerability
query = "SELECT * FROM users WHERE id = " + userInput;
query = f"DELETE FROM orders WHERE user_id = {user_id}";
-- ✅ SECURE: Parameterized queries
-- PostgreSQL/MySQL
PREPARE stmt FROM 'SELECT * FROM users WHERE id = ?';
EXECUTE stmt USING @user_id;
-- SQL Server
EXEC sp_executesql N'SELECT * FROM users WHERE id = @id', N'@id INT', @id = @user_id;
```
### Access Control & Permissions
- **Principle of Least Privilege**: Grant minimum required permissions
- **Role-Based Access**: Use database roles instead of direct user permissions
- **Schema Security**: Proper schema ownership and access controls
- **Function/Procedure Security**: Review DEFINER vs INVOKER rights
### Data Protection
- **Sensitive Data Exposure**: Avoid SELECT * on tables with sensitive columns
- **Audit Logging**: Ensure sensitive operations are logged
- **Data Masking**: Use views or functions to mask sensitive data
- **Encryption**: Verify encrypted storage for sensitive data
## ⚡ Performance Optimization
### Query Structure Analysis
```sql
-- ❌ BAD: Inefficient query patterns
SELECT DISTINCT u.*
FROM users u, orders o, products p
WHERE u.id = o.user_id
AND o.product_id = p.id
AND YEAR(o.order_date) = 2024;
-- ✅ GOOD: Optimized structure
SELECT u.id, u.name, u.email
FROM users u
INNER JOIN orders o ON u.id = o.user_id
WHERE o.order_date >= '2024-01-01'
AND o.order_date < '2025-01-01';
```
### Index Strategy Review
- **Missing Indexes**: Identify columns that need indexing
- **Over-Indexing**: Find unused or redundant indexes
- **Composite Indexes**: Multi-column indexes for complex queries
- **Index Maintenance**: Check for fragmented or outdated indexes
### Join Optimization
- **Join Types**: Verify appropriate join types (INNER vs LEFT vs EXISTS)
- **Join Order**: Optimize for smaller result sets first
- **Cartesian Products**: Identify and fix missing join conditions
- **Subquery vs JOIN**: Choose the most efficient approach
### Aggregate and Window Functions
```sql
-- ❌ BAD: Inefficient aggregation
SELECT user_id,
(SELECT COUNT(*) FROM orders o2 WHERE o2.user_id = o1.user_id) as order_count
FROM orders o1
GROUP BY user_id;
-- ✅ GOOD: Efficient aggregation
SELECT user_id, COUNT(*) as order_count
FROM orders
GROUP BY user_id;
```
## 🛠️ Code Quality & Maintainability
### SQL Style & Formatting
```sql
-- ❌ BAD: Poor formatting and style
select u.id,u.name,o.total from users u left join orders o on u.id=o.user_id where u.status='active' and o.order_date>='2024-01-01';
-- ✅ GOOD: Clean, readable formatting
SELECT u.id,
u.name,
o.total
FROM users u
LEFT JOIN orders o ON u.id = o.user_id
WHERE u.status = 'active'
AND o.order_date >= '2024-01-01';
```
### Naming Conventions
- **Consistent Naming**: Tables, columns, constraints follow consistent patterns
- **Descriptive Names**: Clear, meaningful names for database objects
- **Reserved Words**: Avoid using database reserved words as identifiers
- **Case Sensitivity**: Consistent case usage across schema
### Schema Design Review
- **Normalization**: Appropriate normalization level (avoid over/under-normalization)
- **Data Types**: Optimal data type choices for storage and performance
- **Constraints**: Proper use of PRIMARY KEY, FOREIGN KEY, CHECK, NOT NULL
- **Default Values**: Appropriate default values for columns
## 🗄️ Database-Specific Best Practices
### PostgreSQL
```sql
-- Use JSONB for JSON data
CREATE TABLE events (
id SERIAL PRIMARY KEY,
data JSONB NOT NULL,
created_at TIMESTAMPTZ DEFAULT NOW()
);
-- GIN index for JSONB queries
CREATE INDEX idx_events_data ON events USING gin(data);
-- Array types for multi-value columns
CREATE TABLE tags (
post_id INT,
tag_names TEXT[]
);
```
### MySQL
```sql
-- Use appropriate storage engines
CREATE TABLE sessions (
id VARCHAR(128) PRIMARY KEY,
data TEXT,
expires TIMESTAMP
) ENGINE=InnoDB;
-- Optimize for InnoDB
ALTER TABLE large_table
ADD INDEX idx_covering (status, created_at, id);
```
### SQL Server
```sql
-- Use appropriate data types
CREATE TABLE products (
id BIGINT IDENTITY(1,1) PRIMARY KEY,
name NVARCHAR(255) NOT NULL,
price DECIMAL(10,2) NOT NULL,
created_at DATETIME2 DEFAULT GETUTCDATE()
);
-- Columnstore indexes for analytics
CREATE COLUMNSTORE INDEX idx_sales_cs ON sales;
```
### Oracle
```sql
-- Use sequences for auto-increment
CREATE SEQUENCE user_id_seq START WITH 1 INCREMENT BY 1;
CREATE TABLE users (
id NUMBER DEFAULT user_id_seq.NEXTVAL PRIMARY KEY,
name VARCHAR2(255) NOT NULL
);
```
## 🧪 Testing & Validation
### Data Integrity Checks
```sql
-- Verify referential integrity
SELECT o.user_id
FROM orders o
LEFT JOIN users u ON o.user_id = u.id
WHERE u.id IS NULL;
-- Check for data consistency
SELECT COUNT(*) as inconsistent_records
FROM products
WHERE price < 0 OR stock_quantity < 0;
```
### Performance Testing
- **Execution Plans**: Review query execution plans
- **Load Testing**: Test queries with realistic data volumes
- **Stress Testing**: Verify performance under concurrent load
- **Regression Testing**: Ensure optimizations don't break functionality
## 📊 Common Anti-Patterns
### N+1 Query Problem
```sql
-- ❌ BAD: N+1 queries in application code
for user in users:
orders = query("SELECT * FROM orders WHERE user_id = ?", user.id)
-- ✅ GOOD: Single optimized query
SELECT u.*, o.*
FROM users u
LEFT JOIN orders o ON u.id = o.user_id;
```
### Overuse of DISTINCT
```sql
-- ❌ BAD: DISTINCT masking join issues
SELECT DISTINCT u.name
FROM users u, orders o
WHERE u.id = o.user_id;
-- ✅ GOOD: Proper join without DISTINCT
SELECT u.name
FROM users u
INNER JOIN orders o ON u.id = o.user_id
GROUP BY u.name;
```
### Function Misuse in WHERE Clauses
```sql
-- ❌ BAD: Functions prevent index usage
SELECT * FROM orders
WHERE YEAR(order_date) = 2024;
-- ✅ GOOD: Range conditions use indexes
SELECT * FROM orders
WHERE order_date >= '2024-01-01'
AND order_date < '2025-01-01';
```
## 📋 SQL Review Checklist
### Security
- [ ] All user inputs are parameterized
- [ ] No dynamic SQL construction with string concatenation
- [ ] Appropriate access controls and permissions
- [ ] Sensitive data is properly protected
- [ ] SQL injection attack vectors are eliminated
### Performance
- [ ] Indexes exist for frequently queried columns
- [ ] No unnecessary SELECT * statements
- [ ] JOINs are optimized and use appropriate types
- [ ] WHERE clauses are selective and use indexes
- [ ] Subqueries are optimized or converted to JOINs
### Code Quality
- [ ] Consistent naming conventions
- [ ] Proper formatting and indentation
- [ ] Meaningful comments for complex logic
- [ ] Appropriate data types are used
- [ ] Error handling is implemented
### Schema Design
- [ ] Tables are properly normalized
- [ ] Constraints enforce data integrity
- [ ] Indexes support query patterns
- [ ] Foreign key relationships are defined
- [ ] Default values are appropriate
## 🎯 Review Output Format
### Issue Template
```
## [PRIORITY] [CATEGORY]: [Brief Description]
**Location**: [Table/View/Procedure name and line number if applicable]
**Issue**: [Detailed explanation of the problem]
**Security Risk**: [If applicable - injection risk, data exposure, etc.]
**Performance Impact**: [Query cost, execution time impact]
**Recommendation**: [Specific fix with code example]
**Before**:
```sql
-- Problematic SQL
```
**After**:
```sql
-- Improved SQL
```
**Expected Improvement**: [Performance gain, security benefit]
```
### Summary Assessment
- **Security Score**: [1-10] - SQL injection protection, access controls
- **Performance Score**: [1-10] - Query efficiency, index usage
- **Maintainability Score**: [1-10] - Code quality, documentation
- **Schema Quality Score**: [1-10] - Design patterns, normalization
### Top 3 Priority Actions
1. **[Critical Security Fix]**: Address SQL injection vulnerabilities
2. **[Performance Optimization]**: Add missing indexes or optimize queries
3. **[Code Quality]**: Improve naming conventions and documentation
Focus on providing actionable, database-agnostic recommendations while highlighting platform-specific optimizations and best practices.

View File

@ -0,0 +1,297 @@
---
mode: 'agent'
tools: ['changes', 'codebase', 'editFiles', 'problems']
description: 'Universal SQL performance optimization assistant for query tuning, indexing strategies, and database performance across all SQL databases.'
---
# SQL Performance Optimization Assistant
Expert SQL performance optimization for ${selection} (or entire project if no selection). Focus on universal SQL optimization techniques that work across MySQL, PostgreSQL, SQL Server, Oracle, and other SQL databases.
## 🎯 Core Optimization Areas
### Query Performance Analysis
```sql
-- ❌ BAD: Inefficient query patterns
SELECT * FROM orders o
WHERE YEAR(o.created_at) = 2024
AND o.customer_id IN (
SELECT c.id FROM customers c WHERE c.status = 'active'
);
-- ✅ GOOD: Optimized query with proper indexing hints
SELECT o.id, o.customer_id, o.total_amount, o.created_at
FROM orders o
INNER JOIN customers c ON o.customer_id = c.id
WHERE o.created_at >= '2024-01-01'
AND o.created_at < '2025-01-01'
AND c.status = 'active';
-- Required indexes:
-- CREATE INDEX idx_orders_created_at ON orders(created_at);
-- CREATE INDEX idx_customers_status ON customers(status);
-- CREATE INDEX idx_orders_customer_id ON orders(customer_id);
```
### Index Strategy Optimization
```sql
-- ❌ BAD: Poor indexing strategy
CREATE INDEX idx_user_data ON users(email, first_name, last_name, created_at);
-- ✅ GOOD: Optimized composite indexing
-- For queries filtering by email first, then sorting by created_at
CREATE INDEX idx_users_email_created ON users(email, created_at);
-- For full-text name searches
CREATE INDEX idx_users_name ON users(last_name, first_name);
-- For user status queries
CREATE INDEX idx_users_status_created ON users(status, created_at)
WHERE status IS NOT NULL;
```
### Subquery Optimization
```sql
-- ❌ BAD: Correlated subquery
SELECT p.product_name, p.price
FROM products p
WHERE p.price > (
SELECT AVG(price)
FROM products p2
WHERE p2.category_id = p.category_id
);
-- ✅ GOOD: Window function approach
SELECT product_name, price
FROM (
SELECT product_name, price,
AVG(price) OVER (PARTITION BY category_id) as avg_category_price
FROM products
) ranked
WHERE price > avg_category_price;
```
## 📊 Performance Tuning Techniques
### JOIN Optimization
```sql
-- ❌ BAD: Inefficient JOIN order and conditions
SELECT o.*, c.name, p.product_name
FROM orders o
LEFT JOIN customers c ON o.customer_id = c.id
LEFT JOIN order_items oi ON o.id = oi.order_id
LEFT JOIN products p ON oi.product_id = p.id
WHERE o.created_at > '2024-01-01'
AND c.status = 'active';
-- ✅ GOOD: Optimized JOIN with filtering
SELECT o.id, o.total_amount, c.name, p.product_name
FROM orders o
INNER JOIN customers c ON o.customer_id = c.id AND c.status = 'active'
INNER JOIN order_items oi ON o.id = oi.order_id
INNER JOIN products p ON oi.product_id = p.id
WHERE o.created_at > '2024-01-01';
```
### Pagination Optimization
```sql
-- ❌ BAD: OFFSET-based pagination (slow for large offsets)
SELECT * FROM products
ORDER BY created_at DESC
LIMIT 20 OFFSET 10000;
-- ✅ GOOD: Cursor-based pagination
SELECT * FROM products
WHERE created_at < '2024-06-15 10:30:00'
ORDER BY created_at DESC
LIMIT 20;
-- Or using ID-based cursor
SELECT * FROM products
WHERE id > 1000
ORDER BY id
LIMIT 20;
```
### Aggregation Optimization
```sql
-- ❌ BAD: Multiple separate aggregation queries
SELECT COUNT(*) FROM orders WHERE status = 'pending';
SELECT COUNT(*) FROM orders WHERE status = 'shipped';
SELECT COUNT(*) FROM orders WHERE status = 'delivered';
-- ✅ GOOD: Single query with conditional aggregation
SELECT
COUNT(CASE WHEN status = 'pending' THEN 1 END) as pending_count,
COUNT(CASE WHEN status = 'shipped' THEN 1 END) as shipped_count,
COUNT(CASE WHEN status = 'delivered' THEN 1 END) as delivered_count
FROM orders;
```
## 🔍 Query Anti-Patterns
### SELECT Performance Issues
```sql
-- ❌ BAD: SELECT * anti-pattern
SELECT * FROM large_table lt
JOIN another_table at ON lt.id = at.ref_id;
-- ✅ GOOD: Explicit column selection
SELECT lt.id, lt.name, at.value
FROM large_table lt
JOIN another_table at ON lt.id = at.ref_id;
```
### WHERE Clause Optimization
```sql
-- ❌ BAD: Function calls in WHERE clause
SELECT * FROM orders
WHERE UPPER(customer_email) = 'JOHN@EXAMPLE.COM';
-- ✅ GOOD: Index-friendly WHERE clause
SELECT * FROM orders
WHERE customer_email = 'john@example.com';
-- Consider: CREATE INDEX idx_orders_email ON orders(LOWER(customer_email));
```
### OR vs UNION Optimization
```sql
-- ❌ BAD: Complex OR conditions
SELECT * FROM products
WHERE (category = 'electronics' AND price < 1000)
OR (category = 'books' AND price < 50);
-- ✅ GOOD: UNION approach for better optimization
SELECT * FROM products WHERE category = 'electronics' AND price < 1000
UNION ALL
SELECT * FROM products WHERE category = 'books' AND price < 50;
```
## 📈 Database-Agnostic Optimization
### Batch Operations
```sql
-- ❌ BAD: Row-by-row operations
INSERT INTO products (name, price) VALUES ('Product 1', 10.00);
INSERT INTO products (name, price) VALUES ('Product 2', 15.00);
INSERT INTO products (name, price) VALUES ('Product 3', 20.00);
-- ✅ GOOD: Batch insert
INSERT INTO products (name, price) VALUES
('Product 1', 10.00),
('Product 2', 15.00),
('Product 3', 20.00);
```
### Temporary Table Usage
```sql
-- ✅ GOOD: Using temporary tables for complex operations
CREATE TEMPORARY TABLE temp_calculations AS
SELECT customer_id,
SUM(total_amount) as total_spent,
COUNT(*) as order_count
FROM orders
WHERE created_at >= '2024-01-01'
GROUP BY customer_id;
-- Use the temp table for further calculations
SELECT c.name, tc.total_spent, tc.order_count
FROM temp_calculations tc
JOIN customers c ON tc.customer_id = c.id
WHERE tc.total_spent > 1000;
```
## 🛠️ Index Management
### Index Design Principles
```sql
-- ✅ GOOD: Covering index design
CREATE INDEX idx_orders_covering
ON orders(customer_id, created_at)
INCLUDE (total_amount, status); -- SQL Server syntax
-- Or: CREATE INDEX idx_orders_covering ON orders(customer_id, created_at, total_amount, status); -- Other databases
```
### Partial Index Strategy
```sql
-- ✅ GOOD: Partial indexes for specific conditions
CREATE INDEX idx_orders_active
ON orders(created_at)
WHERE status IN ('pending', 'processing');
```
## 📊 Performance Monitoring Queries
### Query Performance Analysis
```sql
-- Generic approach to identify slow queries
-- (Specific syntax varies by database)
-- For MySQL:
SELECT query_time, lock_time, rows_sent, rows_examined, sql_text
FROM mysql.slow_log
ORDER BY query_time DESC;
-- For PostgreSQL:
SELECT query, calls, total_time, mean_time
FROM pg_stat_statements
ORDER BY total_time DESC;
-- For SQL Server:
SELECT
qs.total_elapsed_time/qs.execution_count as avg_elapsed_time,
qs.execution_count,
SUBSTRING(qt.text, (qs.statement_start_offset/2)+1,
((CASE qs.statement_end_offset WHEN -1 THEN DATALENGTH(qt.text)
ELSE qs.statement_end_offset END - qs.statement_start_offset)/2)+1) as query_text
FROM sys.dm_exec_query_stats qs
CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) qt
ORDER BY avg_elapsed_time DESC;
```
## 🎯 Universal Optimization Checklist
### Query Structure
- [ ] Avoiding SELECT * in production queries
- [ ] Using appropriate JOIN types (INNER vs LEFT/RIGHT)
- [ ] Filtering early in WHERE clauses
- [ ] Using EXISTS instead of IN for subqueries when appropriate
- [ ] Avoiding functions in WHERE clauses that prevent index usage
### Index Strategy
- [ ] Creating indexes on frequently queried columns
- [ ] Using composite indexes in the right column order
- [ ] Avoiding over-indexing (impacts INSERT/UPDATE performance)
- [ ] Using covering indexes where beneficial
- [ ] Creating partial indexes for specific query patterns
### Data Types and Schema
- [ ] Using appropriate data types for storage efficiency
- [ ] Normalizing appropriately (3NF for OLTP, denormalized for OLAP)
- [ ] Using constraints to help query optimizer
- [ ] Partitioning large tables when appropriate
### Query Patterns
- [ ] Using LIMIT/TOP for result set control
- [ ] Implementing efficient pagination strategies
- [ ] Using batch operations for bulk data changes
- [ ] Avoiding N+1 query problems
- [ ] Using prepared statements for repeated queries
### Performance Testing
- [ ] Testing queries with realistic data volumes
- [ ] Analyzing query execution plans
- [ ] Monitoring query performance over time
- [ ] Setting up alerts for slow queries
- [ ] Regular index usage analysis
## 📝 Optimization Methodology
1. **Identify**: Use database-specific tools to find slow queries
2. **Analyze**: Examine execution plans and identify bottlenecks
3. **Optimize**: Apply appropriate optimization techniques
4. **Test**: Verify performance improvements
5. **Monitor**: Continuously track performance metrics
6. **Iterate**: Regular performance review and optimization
Focus on measurable performance improvements and always test optimizations with realistic data volumes and query patterns.